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An efficient synthesis of 4-bromo-N-substituted oxindoles by
an intramolecular copper-catalyzed amidation reaction
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Abstract—A highly efficient synthetic approach to novel 4-bromo-N-substituted oxindoles is described. The method involves a mild
intramolecular copper-catalyzed amidation reaction of N-substituted 2,6-dibromophenylacetamides. In contrast to our recently
published palladium-catalyzed amidation reaction, no concomitant dimerization on the 3-position of the formed oxindole occurs.
� 2007 Elsevier Ltd. All rights reserved.
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The 1,3-dihydroindol-2-one (oxindole) motif is present
in several biologically active compounds like the anti-
Parkinson’s drug ropinirole1 and the growth hormone
secretagogues.2 In addition, the oxindole moiety plays
an important role in P-glycoprotein-mediated multiple
drug resistance inhibitors,3 anti-inflammatory agents,4

non-opioid nociceptin receptor ligands5 and serotoner-
gics.6,7 Moreover, the oxindole unit is a key element in
several natural products8 and 3-unsubstituted oxindoles
are important starting materials for further functionali-
zation.9 As a consequence, the development of efficient
synthetic strategies towards 3-unsubstituted oxindoles
is of great importance. Many examples of novel oxin-
dole syntheses have been reported including the
intramolecular Heck reaction,10 the intramolecular pal-
ladium-catalyzed a-arylation reaction from 2-halo-
phenylacetamides,11 from a-chloroacetanilides via an
intramolecular palladium-catalyzed C–H functionaliza-
tion12 and a palladium-catalyzed domino process.13

The majority of these methods lead to 3-monosubsti-
tuted or 3,3-disubstituted oxindoles whereas straightfor-
ward synthetic approaches to the less stable 3-
unsubstituted oxindoles are uncommon.

Recently, we disclosed an intramolecular palladium-cat-
alyzed amidation reaction for the preparation of 3-
unsubstituted, pharmaceutically interesting N-(piperi-
din-4-yl)-1,3-dihydroindol-2-one as a key intermediate
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in the synthesis of ORL-1 receptor ligands.14 The meth-
od was based on the work of Buchwald,15 applying X-
Phos.16 Thereafter, more examples were reported, all
based on the same or related methodology.17 The syn-
thesis of several 4-aryl-1-methyloxindoles involving the
intramolecular palladium-catalyzed amidation of N-
methyl-2,6-dibromophenylacetamide 1, followed by a
Suzuki cross-coupling with arylboronic acids (Scheme
1) in a one-pot reaction, formed an intriguing exten-
sion.18 In the absence of any boronic acid, compound
2 (Fig. 1) was formed instead of 4-bromo oxindole 3.

Due to our continued interest in the application of cop-
per chemistry19 as well as in the preparation of 4-bromo-
1-substituted oxindoles, it was decided to investigate the
ring closure reaction of N-methyl-2,6-dibromophenyl-
acetamide 1 under copper-catalyzed conditions. Cop-
per-catalyzed hetero cross-coupling reactions constitute
a fast growing synthetic area.20 Since Buchwald’s pio-
neering work,21 significant progress has been made
and nowadays copper-catalyzed chemistry has become
1

Scheme 1. Reagents and conditions: (a) 1.5 mol equiv ArB(OH)2;
3 mol equiv K2CO3; 5 mol % Pd(OAc)2; 12.5 mol % X-Phos; t-BuOH,
85 �C.
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R Reactant Product Time (h) Yield (%)

Methyl 1 3 1 84
1-Benzylpiperidin-4-yl 4 8 3.5 55
Phenyl 5 9 1 83
4-Pyridyl 6 10 1 66
t-Butyl 7 11 22 20a

a 2-Acetylcyclohexanone as ligand.
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complementary to palladium-catalyzed hetero cross-
coupling chemistry. The first attempt to achieve this ring
closure reaction of N-methyl-2,6-dibromophenylacet-
amide 1 under copper-catalyzed conditions was inspired
by reports from De Vries et al. who disclosed an opti-
mized method for the copper-catalyzed amination of
functionalized aryl bromides in which CuCl was applied
as a cheap copper catalyst in combination with a com-
mercially available diketone as the ligand.22 Their results
were confirmed by Buchwald.23 After a brief survey of
reaction conditions, the amidation reaction of com-
pound 1 gave 4-bromo-N-methyloxindole 3 in a high
yield (84%) without a trace of the dimeric compound 2
(Scheme 2). Since a literature survey revealed that 3-
unsubstituted 4-bromo-N-substituted oxindoles are very
uncommon, it was decided to examine the generality of
our copper-based synthetic methodology. The N-substi-
tuted 2,6-dibromophenylacetamides 4–7 were pre-
pared18 with only a slight modification in the last step
wherein only 1 equiv of the appropriate amine was used
and potassium carbonate was applied as an acid scaven-
ger. These amides24 4–7 were subsequently subjected to
the intramolecular copper-catalyzed amidation reactions
as described in Table 1 to yield the 4-bromooxindoles
8–11, respectively. It should be noted that all yields refer
to isolated pure products.25,26

In general, the intramolecular copper-catalyzed amida-
tion reactions proceeded cleanly within a few hours in
fair to high yields. Compound 8 is of importance as an
attractive synthetic target for further development of
ORL-1 receptor ligands. Of special note is the synthesis
of 9 and 10 as an alternative method to the direct cop-
per-catalyzed N-arylation of 3-unsubstituted oxindoles
recently described by Phillips et al.27 It is interesting to
note that the synthesis of compound 11 required a
significantly longer reaction time, probably due to steric
hindrance. Decomposition of the 3-unsubstituted oxin-
dole 11, which turned out to be unstable under the
applied basic conditions during the prolonged reaction
time, was observed. After 6 h, compound 11 was iso-
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Scheme 2. Reagents and conditions: (a) 1 mol equiv 1; 5 mol equiv
K2CO3; 10 mol % CuCl; 25 mol % acetylacetonate (acac); NMP,
85 �C.
lated in a disappointingly low yield of 15%. A prolonged
reaction overnight gave a slightly higher yield but
resulted in the concomitant formation of intractable
material which made purification more difficult.
Replacement of the acetylacetonate ligand for 2-acetyl-
cyclohexanone furnished 11 in 20% yield after a reaction
time of 22 h accompanied by 50% recovery of the start-
ing material. During the course of our investigations, an
article was published concerning the synthesis of 3-
substituted N-alkylated oxindoles by a microwave cop-
per-catalyzed amidation28 wherein steric effects in the
ring closure were also reported. In agreement with our
results, the formation of their 3-substituted N-t-butyl
oxindoles was found to be very problematical. A com-
peting O-arylation reaction resulting in a 2-(t-butyl-
amino)benzo[b]furan was not observed during our
investigations.

Attempts to further optimize the synthesis of 4-bromo-
N-(t-butyl)oxindole 11 from 7 using microwave technol-
ogy (the same conditions as in the bottom line of Table
1, 100 �C at 250 W over 30 min in an open Mile-
stone Ethos 900 microwave) delivered only starting
materials. Raising the temperature to 150 �C over
45 min yielded some starting material and intractable
decomposition products, based upon TLC and LC/MS
analysis. Applying the ligandless conditions according
to the procedure developed for the microwave Goldberg
reaction19a (10 mol % CuI, 1 equiv K2CO3 in degassed
NMP at a temperature of 150 �C (250 W) for 30 min)
did not furnish any 11. To obtain further insight on
the stability of the 4-bromooxindoles under these reac-
tion conditions, we subjected compound 5 to these
ligandless microwave conditions at a temperature of
150 �C. After 3 min we were able to detect compound
9 along with some starting material 5. After 6 min of
microwave heating 5 was still present, but after 9 min
we could only detect starting amide 5 together with
some debrominated amide. These findings support our
earlier observations that 3-unsubstituted (bromo)oxin-
doles are sensitive under basic condition29 and as a con-
sequence rapidly decompose at higher reaction
temperatures.

Since previous work18 demonstrated the high propensity
of the 4-bromo atom in 3 to be replaced by an aryl
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Scheme 3. Reagents and conditions: (a) 1.5 mol equiv amine: 2.5 mol equiv K3PO4ÆH2O; 5 mol % Pd(OAc)2; 10 mol % DavePhos: toluene 100 �C.
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group in the Suzuki reaction, the copper-catalyzed
amination of 4-bromo-N-methyloxindole 3 was further
investigated. Unfortunately, all attempts to replace the
bromine with an amine led to decomposition of 3.
As it is known that the palladium-catalyzed replace-
ment of the bromine atom in aryl bromides is more
effective than the copper-catalyzed method, we decided
to switch to the palladium-catalyzed amination. Indeed,
the palladium-catalyzed reaction of 3 with either 1-benz-
ylpiperazine or benzylamine gave more promising re-
sults. It was possible to isolate the target 4-aminated
N-methyloxindoles 12–13 in moderate yields (25–30%),
when the reaction was conducted in the presence of
Pd(OAc)2, 2 0-dicyclohexylphosphino-2-(N,N-dimethyl-
amino)-biphenyl (DavePhos) and K3PO4ÆH2O in toluene
at 100 �C. The major side reaction was the formation of
the dimeric compound 2 accompanied by the formation
of intractable material. The analogous reaction from
compound 9 produced 14 in 30% yield. It is worth not-
ing that in all cases, the starting material had completely
disappeared (Scheme 3).30

To summarize, we have developed an efficient and gen-
eral synthetic method for 3-unsubstituted 4-bromo-N-
substituted oxindoles. The key step comprises an intra-
molecular copper-catalyzed amidation reaction. Steric
factors have a negative effect on both the reaction rate
and yield. Amination of the 4-bromo substituent in 3
using copper catalysis failed whereas the corresponding
palladium-catalyzed aminations were more promising.
Further optimization of the palladium-catalyzed amina-
tion is in progress.
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(m, 4H). Compound 14: 1H NMR (400 MHz, CDCl3): d
3.48 (s, 2H), 3.89 (br s, 1H), 4.45 (s, 2H), 6.23 (d, J = 8 Hz,
1H), 6.43 (d, J = 8 Hz, 1H), 7.07 (t, J = 8 Hz, 1H), 7.29–
7.33 (m, 1H), 7.35–7.55 (m, 9H).
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